
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 1, JANUARY 2019 103

Multistage Linear Feedback Shift Register Counters
With Reduced Decoding Logic in 130-nm CMOS

for Large-Scale Array Applications
Daniel Morrison , Student Member, IEEE, Dennis Delic, Member, IEEE,

Mehmet Rasit Yuce , Senior Member, IEEE, and
Jean-Michel Redouté , Senior Member, IEEE

Abstract— Linear-feedback shift register (LFSR) counters have
been shown to be well suited to applications requiring large
arrays of counters and can improve the area and performance
compared with conventional binary counters. However, signif-
icant logic is required to decode the count order into binary,
causing system-on-chip designs to be unfeasible. This paper
presents a counter design based on multiple LFSR stages that
retains the advantages of a single-stage LFSR but only requires
decoding logic that scales logarithmically with the number of
stages rather than exponentially with the number of bits as
required by other methods. A four-stage four-bit LFSR proof of
concept was fabricated in 130-nm CMOS and was characterized
in a time-to-digital converter application at 800 MHz.

Index Terms— 3-D imaging, binary counters, decoding
logic, event counters, linear-feedback shift register (LFSR),
single-photon detection.

I. INTRODUCTION

W ITH recent advances in applications such as
single-photon detection, it has become necessary

to implement a large number of arrayed counters in small
areas. These include time-of-flight (TOF) ranging in depth
cameras [1]–[5] where counters are required to count clock
cycles and also photon-counting cameras that count the
number of photons in an interval [6]–[8]. Reducing the area
consumed by the counter in these applications is critical
in increasing the number of pixels in the cameras, as each
camera pixel contains a separate counter.

While linear-feedback shift registers (LFSRs) are typically
used as pseudorandom number generators [9], [10], it has
been shown that they are also an efficient way to implement
synchronous counters [11] and are well suited to large arrayed
designs, as the shift register can act as a serial readout

Manuscript received May 24, 2018; revised August 14, 2018; accepted
September 17, 2018. Date of publication October 11, 2018; date of current
version December 28, 2018. This work was supported by the Australian
Government Research Training Program Scholarship. (Corresponding author:
Daniel Morrison.)

D. Morrison, M. R. Yuce, and J.-M. Redouté are with the Department of
Electrical and Computer Systems Engineering, Monash University, Clayton,
VIC 3800, Australia (e-mail: daniel.morrison@monash.edu).

D. Delic is with the Defence Science and Technology Group, Edinburgh,
SA 5111, Australia.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2018.2872021

mechanism [12]. LFSR counters have been used in the CMOS
pixel design [13] and in single-photon detection arrays [14].
The clock speed of an LFSR is independent of the number
of bits in the counter, and they traverse all states in the state
space except the all zero state. However, the count order of
LFSRs is pseudorandom, so extra processing is required to
decode the LFSR state into binary order.

Three different techniques to decode the LFSR sequence
into binary are compared in [11]: the iteration method,
the direct lookup table (LUT) method, and a time-memory
tradeoff algorithm. The iteration method iterates over the entire
count sequence of the LFSR and compares each to the counter
value. For an n-bit LFSR, this requires approximately 2n−1

comparisons on average. The direct LUT method instead uses
an n × n LUT that directly decodes the LFSR state. The
time-memory tradeoff algorithm introduced in [11] combines
both methods by storing 2(N/2) LFSR count values in a table
and iterating over the LFSR sequence until the count value
matches a value in the table. The number of iterations is
then subtracted from the stored value to obtain the decoded
value. Another algorithm based on discrete logarithms was
introduced in [15] and was adapted for use with ring generator
event counters in [16].

Applications with large arrays require every cell in the array
to be decoded to binary order for further processing, and
for system-on-chip designs, it is necessary to perform this
decoding on chip. This requirement dictates that the decoding
logic must be integrable and fast, since many conversions
need to occur. However, all of the above-mentioned methods
grow exponentially in either time or area with the size of
the LFSR. For single-photon detection applications, there are
several examples of arrayed designs that would not be able
to be implemented with LFSR counters without prohibitively
large integrated LUTs [17]–[19].

This paper proposes a new counter design based on multiple
LFSR stages, which can be decoded with logic that grows
logarithmically with the counter size rather than exponen-
tially. While a straightforward concatenation of LFSR counters
would cause a significant performance reduction, similar to
binary ripple counters, this paper introduces a technique to
distribute the ripple signal in time and compensates for this in
a generalized decoding logic scheme. This paper also presents

1063-8210 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7899-3258
https://orcid.org/0000-0002-4802-391X
https://orcid.org/0000-0001-9612-4312

104 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 1, JANUARY 2019

Fig. 1. Block diagram of the multistage LFSR counter.

a proof of concept implementation and characterization of this
counter design in a 130-nm CMOS process. Throughout the
remainder of this paper, an n-bit LFSR will be referred to as
an n-LFSR.

This paper is organized as follows. Section II introduces
the proposed counter design, while Section III compares a
dynamic logic implementation of the counter to conventional
LFSR counters. The fabricated 16-bit counter design is evalu-
ated experimentally and characterized in Section IV. Section V
discusses the merits and limitations of the design compared
with the state of the art. This paper is concluded in Section VI.

II. PROPOSED COUNTER DESIGN

The general scheme of the counter design is shown in Fig. 1.
There are M identical n-LFSR blocks that are controlled by
an enable signal. When the (m − 1)th n-LFSR undergoes a
specific state change, the enable signal is asserted so that
the mth n-LFSR advances one state. This allows the entire
M × n bit state space to be traversed. In large arrayed designs,
the counter can also act as a high-speed serial readout chain.
This is achieved with minimal additional logic that bypasses
the LFSR feedback and ripple-carry blocks.

The multistage counter scheme reduces the counter into M
independent modules, allowing each n-LFSR to be decoded
separately by an n×n bit LUT rather than an (M×n)×(M×n)
bit LUT. For small n, the LUT can easily be implemented
on chip.

A. LFSR Block

Each stage of the counter is triggered once per period of
the previous stage, so missing states from the LFSR sequence
will cause large blocks of counter states to be missing from the
counter state space. Thus, it is important that the n-LFSR is
designed for a maximal length. The maximal sequence length
of an n-LFSR is only 2n − 1, so additional logic is required
to incorporate the missing state into the count sequence. This
can be achieved using a NOR and XOR function to disable
the feedback logic when the 0x000 . . .1 state is detected,
as shown in Fig. 2(c). This sequence-extension logic extends
the sequence length of the individual component LFSRs to
2n so that the counter covers every state in the 2M×n state
space. This also allows the multistage counter to be used in
applications that require every state to be covered, such as
self-starting counters, where traditional LFSRs would not be
applicable.

Fig. 2. (a) Structure of a conventional n-bit ring generator. (b) Structure
of conventional many-to-one 4-LFSRs. (c) Structure of a proposed multistage
n-LFSR block with sequence-extension logic (dotted components). The entire
feedback block is implemented as a single logic block.

Several LFSR feedback styles exist, including many-to-one,
one-to-many (alternatively known as Fibonacci and Galois
LFSRs, respectively), and ring generators. Ring generators
[depicted in Fig. 2(a)] are typically regarded as the optimal
way to implement an LFSR [20], where the shift register
forms a ring and taps form subloops within the ring. However,
the sequence-extension requires additional logic in the LFSR,
dominating the critical path. Instead, many-to-one style LFSRs
[Fig. 2(b)] are used, allowing the feedback logic and the
sequence-extension logic to be combined into a single logic
block for logic minimization as shown in Fig. 2(c). The
multistage counter allows flexibility in choice of the size of
the n-LFSR, so that small single-tap LFSRs are preferentially

MORRISON et al.: MULTISTAGE LFSR COUNTERS WITH REDUCED DECODING LOGIC IN 130-nm CMOS FOR LARGE-SCALE ARRAY APPLICATIONS 105

Fig. 3. Timing diagram of the operation of the multistage LFSR counter. Arrows show the operation of the ripple-carry logic. Highlighted states require
further processing by the decoding logic.

chosen. A single-tap many-to-one LFSR is topologically indis-
tinguishable from the corresponding ring generator.

B. Ripple-Carry Logic

Since the n-LFSR contains every state in the state space,
the LFSR must include the 0b1111 . . . → 0b0111 . . .
transition. This state is a Gray-code transition and occurs in
every n-LFSR design, so it is an ideal ripple trigger transition.
This sets the start of the n-LFSR sequence to 0b0111 . . . so
that it is decoded by the decoding logic to 0x . . .00.

If the counter was designed so that an LUT could directly
decode every stage correctly in a single clock cycle, the ripple
signal would need to propagate through every stage and
detect if each stage will transition. Instead, to prevent the
performance of the counter from decreasing with every extra
stage added to the counter, the ripple signal only acts on the
direct next stage and the ripple signal for the subsequent stages
is carried to the next clock cycle. This distributes the transition
edge over time and, for the mth stage, adds an m clock cycle
delay to the transition edge.

The counter timing diagram that demonstrates the operation
of the ripple-carry logic is shown in Fig. 3. Each LFSR
state is given as a binary value (0b . . .), whereas the state
after decoding with an LUT (the LUT Decode signal) is the
hex value in brackets (0x . . .) for each state. When LFSR 0
transitions from the 0b1111 . . . state to the 0b0111 . . . state,
the RIPPLE 0 signal is generated. On the next clock edge,
the RIPPLE 0 signal acts on LFSR 1 causing it to also
undergo the 0b1111 . . . → 0b0111 . . . transition. This,
therefore, also generates a ripple signal to act on LFSR 2
on the next clock edge. In this way, the ripple-carry logic
causes the transition edge to be delayed one clock cycle per
stage. The delayed transition causes an error triangle to form,
shown by highlighted states in Fig. 3. These states are decoded
incorrectly by the LUT and therefore need to be corrected
with a minor amount of decoding logic in addition to the
n × n bit LUT.

C. Decoding Logic

The decoding logic acts as a postprocessing step on the
multistage LFSR counter array output. As each LFSR value is
read out of the array, it is passed through an LUT. Fig. 3 shows
that the LUT corrects most states to binary order. However,
additional logic is required to correct the errors caused by the
delayed transition.

Two types of LUT decode errors occur: initial errors and
overflow errors. Initial errors occur in the states on the upper
edge of the transition error triangle when the counter is stopped
on the clock cycle before the mth stage transitions. The
decoded value of the previous stages is also the number of
clock cycles since the start of the transition edge. Since the
ripple takes m clock cycles to reach the mth stage, these errors
can be detected if the decoded value of the previous stages is
equal to m −1. Overflow errors occur when the previous stage
has an error and is equal to 0x . . .FF. These errors indicate
that a previous stage should have caused a ripple event on an
earlier clock cycle.

The decoding logic that detects and corrects these errors is
shown in Fig. 4. The error detection of each stage depends
on the decoded value of the previous stages, so each stage is
processed sequentially. If an error condition on the next stage
is detected, the next stage invalid register is set, so that it
is corrected on the next clock cycle. The errors are only ever
one less than the correct value, so the next stage invalid selects
either the LUT output or adds one to the LUT output.

An overflow error in the next stage will occur if the current
stage is an error and also 0x . . .FF. This can be detected by
ANDing the incrementer carryout with the next stage invalid
register. Initial errors can be detected by storing the previously
decoded stages in latches and comparing with a counter that
keeps track of the current stage number. If the current stage
is equal to the previously decoded value, the next stage will
have an initial error. The counter only needs to count to M and
therefore needs y = �log2(M)� bits. Therefore, only a y-bit
comparison needs to be made between the previous decoded

106 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 1, JANUARY 2019

Fig. 4. Logic to decode the multistage LFSR counter state order into binary. Each stage is decoded separately in sequence.

state and the counter, so Z = �(y/n)� stages need to be stored.
The zeros register is used to ensure that all other bits in the
previously decoded value are zero so that the comparison is
valid.

The counter zero point (0x . . .00) is an error state. If all
counter stages are reset to the zero state, the starting count
values will be decoded incorrectly. However, the final state
(0b1111 . . .) is not an error state, so if the counter is reset to
this state instead, the counter will correctly transition to zero
after one clock cycle. The final count value will be off by
one, but this can be corrected by adding one to the final count
value if required.

The time to decode the count value will depend on both
M and n. The decoding logic takes one clock cycle per stage
of the counter, so M clock cycles are required to decode the
entire count value. The critical path of the decoding logic is
implementation-dependent but potentially includes the LUT,
the incrementer, and the comparison to the stage counter,
all of which have reduced performance for large n. Thus,
the maximum clock rate will be lower for larger n values,
but more stages will be required for an equivalently sized
counter with a larger n value, requiring fewer clock cycles
to decode the counter. If the readout of the array is performed
serially, then the decoding logic can be set up as a pipeline in
the readout chain. This only adds an M clock cycle pipeline
delay to the entire array readout, but all individual counter
values will be read out with a decoded value.

III. DYNAMIC CMOS IMPLEMENTATION

AND COMPARISON

In order to compare the performance and area of the multi-
stage LFSR counter to conventional LFSRs, an implementation
was designed to be used as part of a single-shot timing circuit.
Some critical factors of the envisioned single-photon detection
applications of the design are the number of pixels in the
array and the fill factor of the photosensitive area [21]. Both
of these factors require that the counter is minimized in the

Fig. 5. Schematic of the dynamic flip-flop with reset high.

area while maintaining high performance. The ripple-carry
logic proposed in Section II-B, if implemented in conventional
logic techniques, would require an extra memory element to
store the state edge detection in addition to the logic detecting
the transition state. This would significantly reduce the area
efficiency of the counter. Instead, dynamic logic can be used
to combine the state edge detection logic and memory ele-
ment into the same logic block efficiently (see Section III-B).
Dynamic logic also has a tendency to improve the packing
density of the transistors [22], so the entire implementation
was designed using dynamic logic techniques to minimize the
overall counter area.

A. n-LFSR Implementation

The basic flip-flop used in the design is shown in Fig. 5.
This is a dynamic flip-flop with extra transistors M2 and M8

MORRISON et al.: MULTISTAGE LFSR COUNTERS WITH REDUCED DECODING LOGIC IN 130-nm CMOS FOR LARGE-SCALE ARRAY APPLICATIONS 107

Fig. 6. Schematic of the dynamic feedback logic for maximal length, single-tap, many-to-one n-LFSR with sequence-extension logic. T inputs represent
tap bits and N inputs are nontap bits. T0 is the last bit in the LFSR. (a) n < 7. (b) n ≥ 7. To extend to multiple taps, the TXOR and TXOR blocks should be
replaced with the XOR and XNOR of all tap bits, respectively. The branch in (a) evaluating N should also be ANDed with the inverse of all tap bits.

that reset the flip-flop by draining the parasitic capacitor. The
flip-flop needs to be constantly refreshed to prevent leakage
from the parasitic capacitor discharging the state. M10–M13
were added as transmission gates from the output to the input
to allow the flip-flop to be clocked without changing state.
The n-bit shift register is formed by chaining n flip-flops. The
output of the flip-flop is only driven, while the clock is high,
so a buffer is required for each flip-flop to ensure that the D
input is always driven when the enable signal changes.

Using the notation illustrated in Fig. 2(b) and (c), T0 as the
final LFSR bit, Tx as the x th tap of the LFSR, TXOR as the
XOR of all LFSR taps (except T0), and N̄ as the NOR of all
nontap bits, a dynamic feedback logic block required for a
many-to-one LFSR with 2n states can be implemented using
the following nMOS pull-down network:
D̄ = T0(TXOR + T̄1T̄2 . . . N̄)

+ T̄0({TXOR − T̄1T̄2 . . .} + T̄1T̄2 . . . N) (1)

as presented in the Appendix. Fig. 6(a) shows the transistor
implementation of this feedback network for a single-tap
LFSR. As n becomes large, the series connection of all N
bits becomes slow and the number of transistors required to
implement the feedback becomes large. For large n, it becomes
more efficient to directly evaluate

D = T0 ⊕ (TXOR + T̄1T̄2 . . . N̄) (2)

using a dynamic logic block to evaluate TXOR + T̄1T̄2 . . . N̄
and a transmission gate-based XOR gate. This implementation,
shown in Fig. 6(b), only depends on the parallel combination
of all nontap bits (N), removing the series connection of all
nontap bits (N̄) that was required to implement (1). However,
the extra stage implementing the XOR gate adds a delay to the
evaluation of the feedback logic. It was shown in simulation

that Fig. 6(b) becomes the more efficient implementation in
both area and performance for n ≥ 7.

The complexity of these two logic blocks scale with the
number of taps in the n-LFSR, so the tap configuration that
gives a maximal sequence length with the least number of
taps is preferred to minimize the number of transistors in the
feedback logic. The LFSRs used in the following comparisons
use the tap configurations provided in [23].

B. Ripple-Carry Logic Implementation

The ripple-carry logic detects when the n-LFSR undergoes
the 0b1111 . . . → 0b0111 . . . transition and signals the next
stage to increment one state on the next clock edge. A general
implementation of the ripple-carry logic is shown in Fig. 7(a).
The circuit operation is shown in Fig. 7(b).

1) The ripple clock is generated from the main clock so
that the rising edge occurs before the rising edge of the
main clock by some delay (the ripple delay).

2) While the ripple clock is high and all bits in the LFSR
are high, then the center node will be pulled low.
This detects that the state before the clock edge was
0b1111 . . .

3) On the rising edge of the main clock, the LFSR advances
to the next state and BIT0 will be driven low. This causes
the output node to be pulled high and the 0b1111 . . . →
0b0111 . . . transition has been detected.

4) On the falling edge of the clock, the center node is reset.
5) On the next rising clock edge, the output is reset low.
6) The ripple signal is the enable for the next LFSR

stage allowing it to increment one state after the state
transition.

Transistor M5 prevents the next stage from triggering, while
the counter is stopped. This implementation is targeted as a

108 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 1, JANUARY 2019

Fig. 7. (a) Schematic of the logic that detects the 0x . . .FF to 0x . . .F7
state edge of the n-LFSR to ripple the next stage. (b) Timing diagram of the
operation of the ripple-carry logic.

single-shot counter, so it needs to be reset after being stopped
to prevent missing states from the count order. This design
can be extended to a complete implementation by adding extra
logic to store the detection of the 0x . . .FF state, while the
counter is stopped.

C. Compared Architectures

Throughout the remainder of this section, comparisons will
be made between the multistage LFSR counter and the various
conventional architectures listed in the following. While these
architectures could be implemented using standard cells or
conventional logic techniques, for a fair comparison, each
architecture is implemented using the same dynamic logic
style and flip-flops as the multistage LFSR architecture.

1) 2-LFSR: The 2-LFSR is a special case of an LFSR where
a maximal length feedback function can be implemented using
a single inverter between the output of one flip-flop and the
input of the other. Similarly, a 1-LFSR can be implemented
in the same way.

2) Ring Generator: The ring generator is implemented,
as shown in Fig. 2(a). The flip-flops are arranged in a ring,
and each tap forms a subloop within the ring. The subloop tap
is XORed with the main ring so that the number of flip-flops
to the left of the subloop is the same as the tap number for a
maximal length LFSR [20]. The ring generator represents the
ideal performance of an n-LFSR in the comparison.

3) Many-to-One LFSR With Sequence-Extension Logic: The
many-to-one LFSR is implemented in the same way as a single
block of the multistage LFSR architecture, as described in
Section III-A. When compared with the ring generator, this
architecture reveals the performance and area impact of the
sequence-extension logic extending the LFSR count sequence
to 2n . A further comparison with the multistage LFSR shows
the effect of the ripple-carry logic.

4) Binary Counter: The binary counter comparison is
implemented using a hierarchical Manchester carry chain as
described in [11].

D. Area Comparison

The number of transistors used by each type of LFSR
counter, using the same logic design techniques, are calculated
throughout this section using the notation, Ax as the number
of transistors used by block x , n as the number of bits in the
LFSR, and t as the number of taps (excluding T0) required
for a maximal sequence in the LFSR.

1) 2-LFSR: The 2-LFSR uses only an inverter and two flip-
flops, so the size of this LFSR is therefore

A2LFSR = 2AFF + 2. (3)

2) Ring Generator: The ring generator requires a flip-flop
for each bit and a 2-bit XOR gate per tap. Hence

Aring = n AFF + t A2−XOR. (4)

3) Many-to-One LFSR With Sequence-Extension Logic:
The many-to-one LFSR requires a flip-flop for each bit, and
the feedback logic is implemented as in Fig. 6. The number
of transistors required in the feedback logic is the size of
implementing the XOR function as well as the transistors
required for the sequence-extension logic. A multiple-bit wide
XOR pull-down network can be implemented in a recursive tree
structure requiring

At−XOR = 2 + 4 + · · · + 2t + 2t (5)

= 2t + 2
t−1∑

k=0

2k (6)

= 3 · 2t − 2 transistors. (7)

Overall, the feedback logic implemented in a single stage (for
2 < n < 7) requires

Afb1 = 3 · (2t − 1) + 2n−t transistors (8)

and the two-stage feedback logic implementation requires

Afb2 = n−t − 1 + A2−XOR + 3 · 2(t−1) transistors. (9)

MORRISON et al.: MULTISTAGE LFSR COUNTERS WITH REDUCED DECODING LOGIC IN 130-nm CMOS FOR LARGE-SCALE ARRAY APPLICATIONS 109

The overall size of the many-to-one LFSR is

Amto

= n AFF +
{

3 · (2t − 1) + 2n − t, 2 < n < 7

n−t − 1 + A2−XOR + 3 · 2(t−1), n ≥ 7.

(10)

4) Multistage LFSR Counter: The multistage LFSR counter
design uses M, many-to-one n-LFSR stages with the
ripple-carry logic for each. Fig. 7(a) shows that the ripple-carry
logic is implemented using

Aripple = n + 12 transistors. (11)

Therefore, the total size of the multistage LFSR counter is

Amultistage LFSR = (m − 1)(n + 12) + m · Amto(n). (12)

5) Binary Counter: The hierarchical Manchester carry
chain [11] uses a maximum of 4 bits per carry chain and an
AND gate to detect the carry skip conditions for the higher level
carry chains. Each carry chain element uses three transistors
with buffers for each carry output. An XOR gate is also
required for each bit of the counter.

A comparison of the number of transistors used by each
counter implementation relative to the number of transistors
required by the flip-flops is shown in Fig. 8(a). This provides
a measure of additional area required by logic other than the
flip-flops, where a relative area of 1 implies that the counter
has no additional logic.

E. Performance Comparison

Similar to the comparison made in Section III-D, this
section compares the performance of the multistage LFSR
counter to the many-to-one LFSR with sequence-extension
logic, the ring generator, and the binary counter. The mul-
tistage LFSR implementation has five potential critical paths.

1) The voltage on the gates of the feedback logic must
settle when the clock is high.

2) The precharge of the feedback logic must complete
when the clock is high.

3) The feedback logic output to the flip-flop input must
settle when the clock is low.

4) The ripple-carry logic center node must be pulled low
within the ripple delay.

5) The ripple signal propagation to the next stage must
settle within a clock period.

Among these critical paths, 3)–5) depend on the size of
the LFSR, but all are independent of the number of stages.
Increasing the size of the LFSR will impact the performance
but adding extra stages will not, allowing the size of the
counter to be scaled without reducing the performance.

The many-to-one LFSR critical path is the same as the
multistage LFSR without the ripple-carry logic and thus is
defined by critical paths 1)–3). The ring generator critical
path only consists of the XOR gate between two flip-flops
and the fan-out of a flip-flop to one or two gates depend-
ing on the number of adjacent taps. The critical path of
the hierarchical Manchester carry chain occurs during the

0xFFF . . . → 0x000 . . . transition where the carry is required
to propagate through all levels of the carry chain.

All of these critical paths were simulated to compare the
performance over counter size. Fig. 8(b) shows the simulation
results of the maximum clock frequency of each counter type,
normalized to the performance of the 2-LFSR. This gives a
measure of the performance reduction from the maximum
performance that an LFSR can achieve to each compared
architecture.

The multistage LFSR counter was limited by the feedback
logic for the cases of n < 9 other than the special case of
n = 2. In these cases, the performance of the multistage LFSR
counter is similar to the performance of the corresponding
many-to-one n-LFSR but is able to keep the performance
constant over much larger counter sizes by adding stages.
The cases of n ≥ 9 are impacted by the series connection
of all LFSR bits in the ripple-carry logic. Since the multistage
LFSR counter requires small n-LFSR stages, the impact of the
ripple-carry logic will not affect a practical implementation.

The critical path of the many-to-one LFSR (with sequence
extension) was limited by the sequence-extension logic rather
than the structure of the LFSR. Thus, comparing the ring gen-
erator to many-to-one LFSR in Fig. 8(b) shows the increased
delay caused by the extension of the sequence length to 2n .
The performance of the sequence-extension logic is also
impacted by the number of taps used in the many-to-one
style feedback. This is especially prevalent in the 8-LFSR,
where the increased complexity of the three-tap feedback
logic causes the performance to be worse than the single-tap
9-LFSR. These slowdowns are mitigated in the multistage
LFSR architecture by preferentially using small, single-tap
n-LFSR blocks.

F. Decoding Logic Comparison

The size of the multistage LFSR counter decoding logic
can be compared with the decoding methods of conventional
LFSRs in [11] by estimating the number of transistors required
by each method. The iteration method is not feasible with large
arrays, so this method will be ignored. The direct LUT method
uses an n×n LUT. A single-bit wide pass-transistor LUT [24]
requires two transistors for every branch. The total number of
transistors required is given by

TLUT1×n = 2 + 4 + 8 + · · · + 2n (13)

= 2
n−1∑

k=0

2k = 2n+1 − 2. (14)

An extra copy of the LUT is required for each bit of the
counter, so the full LUT required for the direct method requires

TLUTdirect = n(2n+1 − 2). (15)

The time-memory tradeoff algorithm in [11] needs to be
converted to a CMOS implementation to be compared with
the other methods. This can be achieved using a comparison
element for each of the 2(n/2) entries in the stored table,
followed by pass transistors to multiplex the correct table
number into a subtracter. A �(n/2)� bit counter is also needed

110 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 1, JANUARY 2019

Fig. 8. (a) Comparison of area used by the different LFSR counter schemes. Relative area is the ratio of transistors used in the counter to the number of
transistors used by the flip-flops. (b) Simulation results of the performance of LFSR counters. The performance is normalized to the maximum clock rate of
the 2-LFSR. Thus, 2-LFSRs have a normalized performance of 1 but are not shown on the plot.

Fig. 9. Comparison between the decoding logic required by the multistage
LFSR, the direct LUT method, and the time-memory tradeoff method [11].

to count the iterations, and an n-bit LFSR is required to
generate the count sequence.

The multistage LFSR decoding logic (Fig. 4) is constant
for a given n, other than the latches that store the previously
decoded stages and the size of the stage counter. The stage
counter needs y bits (�log2(M)�), and Z latches (�(y/n)�)
are required to decode the M stages. Thus, the size of the
decoding logic for a multistage LFSR will scale proportionally
to log2(M). The remaining decoding logic size was calculated
using the number of transistors required to implement the
logic blocks using conventional CMOS logic techniques for
2 ≤ n ≤ 10.

While an n×n LUT is required as part of the decoding logic
of the multistage LFSR counter, if n is kept small and extra
stages are used to extend the counter size, the decoding logic
does not scale exponentially as occurs in the other methods.
Fig. 9 shows the comparison between the different methods.

TABLE I

COMPARISON OF DECODING LOGIC PROCESSING TIME

There is always a multistage LFSR configuration that has a
smaller decoding logic compared with the other methods.

A comparison table of the decoding time for each method
is shown in Table I. The direct LUT method only requires a
single processing step. However, the minimum time required
to perform this step will depend on the number of branches
in the LUT which scales exponentially with the number of
bits in the LFSR. Conversely, the multistage n-LFSR requires
M processing steps to decode the counter, but each step will
be considerably shorter than an equivalent (n × M)-LFSR
counter decoded by the direct LUT method. Each step of the
multistage n-LFSR decoding method depends on an n×n LUT.
The minimum time required for each processing step in the
time-memory tradeoff method presented in [11] is primarily
limited by the speed of the counter and is therefore much
faster than both the multistage n-LFSR decoding method and
the direct LUT method. However, the number of processing
steps scales exponentially with the size of the LFSR and the
processing time is nondeterministic.

When specifically decoding a large-scale array of counter
values, the decoding logic can be introduced as part of a serial
readout scheme. For the multistage n-LFSR, if the decoding
logic is part of the readout pipeline, only M clock cycles will
be added to the readout of the entire array.

MORRISON et al.: MULTISTAGE LFSR COUNTERS WITH REDUCED DECODING LOGIC IN 130-nm CMOS FOR LARGE-SCALE ARRAY APPLICATIONS 111

Fig. 10. (a) Die microphotograph. (b) Layout of the four-stage 4-LFSR.

IV. FOUR-STAGE 4-LFSR COUNTER MEASUREMENTS

A four-stage 4-LFSR counter was incorporated in the design
of a 16-bit time-to-digital converter (TDC) as an example
application of the multistage LFSR counters. The TDC was
fabricated in 130-nm HV CMOS and used in a 32 × 32 pixel
TOF camera system as shown in the die microphotograph
in Fig. 10(a).

The four-stage 4-LFSR was based on the dynamic logic
implementation presented in Section III using the feedback
logic depicted in Fig. 6(a). In addition to the four-stage
4-LFSR counter, the TDC also includes an SR-latch and
synchronization stage to enable and disable the counter based
on start and stop signals and a clock buffer to drive the clock
transistors and generate the ripple clock. The clock buffer is a
nonoverlapping tapered clock generator, and the ripple clock
waveform was generated using a nonsymmetric tapered buffer.
While the counter design is intended to be read out serially,
for testing purposes, the TDC output is read out of the array
in parallel using tristate inverting buffers. Overall, the TDC
is implemented in an area of 20.49 µm × 31.46 µm and the
layout is shown in Fig. 10(b).

A. Postlayout Simulations

Postlayout simulations of the implemented four-stage
4-LFSR were performed to determine the actual critical path
and the effect of PVT variations on the performance of the
design. The performance was determined by measuring the
slack in each potential critical path identified in Section III-E
and then calculating the minimum clock required to satisfy
each path. While the performance analysis showed that the
critical path is limited by the feedback logic for the n = 4
case, additional parasitic capacitance caused the postlayout
critical path to be the propagation of the ripple-carry signal
to the next stage. The implemented design was optimized
for the area rather than performance, so additional buffers to
overcome the parasitic capacitance could be used to improve
the performance of the design.

Plots of the performance over process corners are shown
in Fig. 11(a) for supply voltage variations and in Fig. 11(b)
for temperature variations. These plots show that the design

Fig. 11. (a) Impact of supply voltage variation on the maximum operating
frequency of the four-stage 4-LFSR over process corners. (b) Impact of
temperature variation on the maximum operating frequency of the four-stage
4-LFSR over process corners. Process corner labels are specified nMOS first.

is more heavily impacted by slow pMOS corners than slow
nMOS corners. This is due to the critical path involving the
evaluation through M3–M5 in the ripple-carry logic [Fig. 7(a)].

Table II shows the breakdown of the power consumption of
each block from the postlayout simulations at 600 MHz, with
the counter consuming an average power of 157.5 µW under
the continuous operation. This shows that the first stage of the
counter uses significantly more power than the later stages.
Thus, the power consumption could be reduced by optimizing
the first stage of the counter for low power consumption
without impacting the high density of the dynamic logic design
of later stages. This would not be possible in a regular LFSR
design where every bit is active on every clock cycle.

B. Counter and Decoding Logic Experimental Validation

To test the TDC and counter design, the chip was connected
to an Opal Kelly ZEM4310 to generate the control signals and
to read out test data to a computer.

The inverted output of each stage of the counter running
at 500 kHz is shown in the oscilloscope capture in Fig. 12.
This shows that the 4-LFSRs traverse all 16 states in the

112 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 1, JANUARY 2019

TABLE II

POSTLAYOUT POWER CONSUMPTION SIMULATIONS AT 600 MHz

Fig. 12. Oscilloscope capture of the four-stage 4-LFSR counter operation at
500 kHz.

expected order and that the ripple-carry logic correctly causes
subsequent stages to progress exactly one state after a 0x0 to
0x1 state transition.

To verify the performance at a higher frequency, the time
between the start and stop signals was incremented in approx-
imately 200-ps steps and compared with the counter output
to get a measure of the timing error of the TDC. The output
of the counter was decoded using a field-programmable gate
array implementation of the decoding logic in Fig. 4. Both
the raw output of the counter and the decoded output were
transmitted to a computer where the raw output was decoded
directly using an LUT to verify the operation of the decoding
logic.

The plot in Fig. 13 shows that the maximum timing error
of the TDC is 0.84 LSB at 800 MHz; 58 outlier data points
of the 413 686 measured data points were identified with
timing errors between 1.66 and −5.58 LSB. All of these
outliers occurred on a state transition and were attributed to
an issue with the synchronization stage of the TDC causing
a metastable state on the hold signal of the counter. This was
confirmed in simulation and measurement.

The TDC was verified to operate up to a maximum clock
frequency of 880 MHz. This slowdown from the simulated

Fig. 13. Timing error of the four-stage 4-LFSR TDC at 800 MHz
over the entire state space of the counter. The input pulses were incre-
mented in approximately 200-ps steps and were asynchronous to the counter
clock.

results in Section IV-A is due to the design of the clock
buffer driving the counter. Dynamic logic is used in the
design, so there is a minimum operating frequency caused
by capacitor leakage. The TDC was verified to operate with
a frequency of 10 kHz, which is significantly lower than the
operating frequencies in the reported designs for the intended
applications (see Section V).

C. Power Consumption Measurement

The power consumption of the implemented TDC was
measured using a 10-s average current measurement. Fig. 14
shows the power consumption over clock frequency. The
power measurements match the postlayout simulations well
with the total power consumption measured at 600 MHz being
799 µW and simulated as 747.9 µW. It should be observed
that most of the power is consumed by circuitry external to
the counter (Table II). This power consumption can be reduced
using a low-power clock buffer design [25] or by sharing the
clock buffer among multiple cells.

V. DISCUSSION

A comparison of the area, power consumption, and operat-
ing frequency of the implemented four-stage 4-LFSR to other
state-of-the-art single-photon detection arrays is presented in
Table III. This shows that the four-stage 4-LFSR compares
well in terms of area to other single-photon sensor arrays,
although in comparing area, it is important to note that the
compared designs may include other circuitry within the stated
area. The four-stage 4-LFSR also allows a much higher clock
frequency than the reported counter operating frequencies of
the other designs allowing the counter of the TDC to have a
higher timing resolution.

The continuous power consumption of the four-stage
4-LFSR is high compared with the power consumption of
the other designs partially due to the usage of dynamic
logic. However, the TDCs in these applications are typically
operated at a low duty cycle [2], [4]. When this is considered,

MORRISON et al.: MULTISTAGE LFSR COUNTERS WITH REDUCED DECODING LOGIC IN 130-nm CMOS FOR LARGE-SCALE ARRAY APPLICATIONS 113

TABLE III

COMPARISON TO PRIOR WORK

Fig. 14. Power consumption measurement of the four-stage four-LFSR TDC.

the average power consumption of the four-stage 4-LFSR is
comparable with the other designs.

This paper was implemented in a 130-nm CMOS process
as it is typical in single-photon detection applications. Extend-
ing this design to more advanced technology nodes for
other applications would require care due to the dynamic
logic style used. Dynamic logic is inherently more suscep-
tible to noise than conventional logic techniques [26], and
the increased PVT variation may cause further performance
variability [27].

Compared with the conventional LFSR counter designs,
the multistage n-LFSR has a performance and area penalty
due to the additional sequence-extension and ripple-carry logic
required. However, if the counter value is required to be
decoded on chip, the multistage n-LFSR provides a method
to convert the LFSR count order into binary in an efficient
way. Overall, the multistage n-LFSR architecture provides a
tradeoff between the high performance and area efficiency

of the LFSR counters with the decoding process required to
convert the sequence into binary.

VI. CONCLUSION

This paper presents a generalized design and a practical
implementation in 130-nm CMOS of multistage LFSR coun-
ters as well as the decoding logic required to convert the count
sequence into binary order. The proposed counter is composed
of multiple smaller LFSR stages that are triggered by a specific
state transition of the previous stage. This configuration allows
the decoding logic to be based on a constant sized LUT
for any number of stages, rather than requiring the LUT to
scale with the size of the counter. The decoding logic of the
proposed counter scales proportionally to the logarithm of the
number of stages, rather than exponentially with the number
of bits as required by decoding methods for conventional
LFSRs. The multistage LFSR counter retains many of the
same advantages that LFSR counters possess, such as high
performance independent of the number of bits in the counter
at the tradeoff of a small amount of extra logic.

A proof of concept of this counter design used in an
integrated TOF camera application was fabricated in 130-nm
CMOS and was verified to operate as expected with a maxi-
mum timing error of 0.84 LSB at 800 MHz. The multistage
LFSR can provide both the performance and area benefits of
LFSR counters to any application that requires an array of
event counters, such as single-photon imaging sensors, while
also allowing for decoding logic that can be implemented on
chip.

An extension of this paper would be to generalize this
multistage counter design to allow different types of counters
in different stages using the same ripple-carry technique.
A generalized multistage counter could use the high perfor-
mance of the LFSR counter for the first stage while using
binary counters for subsequent stage potentially allowing
performance, area, or power consumption opportunities in the
future counter designs.

114 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 27, NO. 1, JANUARY 2019

APPENDIX

The feedback function required to obtain a maximal length
LFSR is an XOR function between the final bit output and
several taps within the LFSR [28]. Furthermore, to ensure that
the all zero state is included as part of the sequence, the NOR

of all bits of the LFSR except the final bit is also XORed into
the feedback function

D = T0 ⊕ TXOR ⊕ (T̄1T̄2 . . . N̄). (16)

Both TXOR and (T̄1T̄2 . . . N̄) depend on the tap bit states,
allowing (16) to be minimized. Expanding the second XOR

in (16) gives

TXOR ⊕ (T̄1T̄2 . . . N̄)=TXOR(T̄1T̄2 . . . N̄)+TXOR(T̄1T̄2 . . . N̄).

(17)

The first term in (17) can be reduced by noting that

TXOR(T̄1T̄2 . . . N̄) = TXOR(T1 + T2 + · · · + N) (18)

and since (T1 + T2 + · · ·) is only false when all Tx are false,
a case not present in TXOR

TXOR(T1 + T2 + · · · + N) = TXOR + TXOR N = TXOR. (19)

The second term in (17) can also be minimized as the T̄1T̄2 . . .
annihilates all terms in TXOR except the case where all taps are
false. Therefore,

TXOR(T̄1T̄2 . . . N̄) = T̄1T̄2 . . . N̄ . (20)

The feedback function can be implemented as a single
dynamic logic block with a pull-down evaluation stage by
implementing the inverse of (16) in nMOS logic. Using the
simplifications in (19) and (20) and expanding the XNOR in
the inverse of (16) give

D̄ = T0(TXOR + T̄1T̄2 . . . N̄) + T̄0(TXOR + T̄1T̄2 . . . N̄).

(21)

(TXOR + T̄1T̄2 . . . N̄) can be simplified similar to (21)

(TXOR + T̄1T̄2 . . . N̄)

= TXOR(T1 + T2 + . . . + N) (22)

= TXOR(T1 + T2 + · · ·) + TXOR N (23)

= {TXOR − T̄1T̄2 . . .} + TXOR N (24)

= {TXOR − T̄1T̄2 . . .}(1 + N) + T̄1T̄2 . . . N (25)

= {TXOR − T̄1T̄2 . . .} + T̄1T̄2 . . . N. (26)

Using (26) in (21) gives

D̄ = T0(TXOR + T̄1T̄2 . . . N̄)

+ T̄0({TXOR − T̄1T̄2 . . .} + T̄1T̄2 . . . N). (27)

REFERENCES

[1] D. Bronzi, Y. Zou, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “Automo-
tive three-dimensional vision through a single-photon counting SPAD
camera,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 3, pp. 782–795,
Mar. 2016.

[2] I. Vornicu, R. Carmona-Galán, and A. Rodríguez-Vázquez, “A CMOS
0.18 µm 64×64 single photon image sensor with in-pixel 11 b time-
to-digital converter,” in Proc. Int. Semiconductor Conf. (CAS), 2014,
pp. 131–134.

[3] M. Perenzoni, D. Perenzoni, and D. Stoppa, “A 64×64-pixels digital
silicon photomultiplier direct TOF sensor with 100-MPhotons/s/pixel
background rejection and imaging/altimeter mode with 0.14% precision
up to 6 km for spacecraft navigation and landing,” IEEE J. Solid-State
Circuits, vol. 52, no. 1, pp. 151–160, Jan. 2017.

[4] J. M. Pavia, M. Scandini, S. Lindner, M. Wolf, and E. Charbon,
“A 1×400 backside-illuminated SPAD sensor with 49.7 ps resolution, 30
pJ/sample TDCs fabricated in 3D CMOS technology for near-infrared
optical tomography,” IEEE J. Solid-State Circuits, vol. 50, no. 10,
pp. 2406–2418, Oct. 2015.

[5] C. Niclass, M. Soga, H. Matsubara, M. Ogawa, and M. Kagami,
“A 0.18-µm CMOS SoC for a 100-m-range 10-frame/s 200×96-pixel
time-of-flight depth sensor,” IEEE J. Solid-State Circuits, vol. 49, no. 1,
pp. 315–330, Jan. 2014.

[6] R. Ballabriga, M. Campbell, E. Heijne, X. Llopart, L. Tlustos, and
W. Wong, “Medipix3: A 64 k pixel detector readout chip working in
single photon counting mode with improved spectrometric performance,”
Nucl. Instrum. Methods Phys. Res. A, Accel. Spectrom. Detect. Assoc.
Equip., vol. 633, pp. S15–S18, May 2011.

[7] J. Kim, S. Park, M. Hegazy, and S. Lee, “Comparison of a photon-
counting-detector and a CMOS flat-panel-detector for a micro-CT,”
in Proc. IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC), 2013,
pp. 1–4.

[8] F. Villa et al., “SPAD smart pixel for time-of-flight and time-correlated
single-photon counting measurements,” IEEE Photon. J., vol. 4, no. 3,
pp. 795–804, Jun. 2012.

[9] H. Mo and M. P. Kennedy, “Masked dithering of MASH digital delta-
sigma modulators with constant inputs using multiple linear feedback
shift registers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 6,
pp. 1390–1399, Jun. 2017.

[10] K. J. Sham, S. Bommalingaiahnapallya, M. R. Ahmadi, and R. Harjani,
“A 3×5-Gb/s multilane low-power 0.18-µm CMOS pseudorandom bit
sequence generator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55,
no. 5, pp. 432–436, May 2008.

[11] A. Ajane, P. M. Furth, E. E. Johnson, and R. L. Subramanyam,
“Comparison of binary and LFSR counters and efficient LFSR decoding
algorithm,” in Proc. IEEE 54th Int. Midwest Symp. Circuits Syst.
(MWSCAS), Aug. 2011, pp. 1–4.

[12] S. Soh et al., “16 bit multi-energy level detecting photon count-
ing ROIC,” in Proc. IEEE Nucl. Sci. Symp. Med. Imag. Conf. Rec.
(NSS/MIC), Oct./Nov. 2012, pp. 801–804.

[13] M. Kłosowski, W. Jendernalik, J. Jakusz, G. Blakiewicz, and
S. Szczepański, “A CMOS pixel with embedded ADC, digital CDS
and gain correction capability for massively parallel imaging array,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 1, pp. 38–49,
Jan. 2017.

[14] D. Bronzi et al., “100 000 frames/s 64×32 single-photon detector
array for 2-D imaging and 3-D ranging,” IEEE J. Sel. Topics Quantum
Electron., vol. 20, no. 6, pp. 354–363, Nov. 2014.

[15] D. W. Clark and L.-J. Weng, “Maximal and near-maximal shift register
sequences: Efficient event counters and easy discrete logarithms,” IEEE
Trans. Comput., vol. 43, no. 5, pp. 560–568, May 1994.

[16] N. Mukherjee, A. Pogiel, J. Rajski, and J. Tyszer, “High-speed on-chip
event counters for embedded systems,” in Proc. 22nd Int. Conf. VLSI
Design, 2009, pp. 275–280.

[17] T. A. Abbas, N. A. W. Dutton, O. Almer, N. Finlayson, F. M. D.
Rocca, and R. Henderson, “A CMOS SPAD sensor with a multi-
event folded flash time-to-digital converter for ultra-fast optical tran-
sient capture,” IEEE Sensors J., vol. 18, no. 8, pp. 3163–3173,
Apr. 2018.

[18] M.-A. Tetrault, E. D. Lamy, A. Boisvert, R. Fontaine, and J.-F. Pratte,
“Low dead time digital SPAD readout architecture for realtime small ani-
mal PET,” in Proc. IEEE Nucl. Sci. Symp. Med. Imag. Conf. (NSS/MIC),
Oct. 2013, pp. 1–6.

[19] N. Krstajić et al., “A 256 × 8 SPAD line sensor for time resolved
fluorescence and raman sensing,” in Proc. 40th Eur. Solid-State Circuits
Conf. (ESSCIRC), 2014, pp. 143–146.

MORRISON et al.: MULTISTAGE LFSR COUNTERS WITH REDUCED DECODING LOGIC IN 130-nm CMOS FOR LARGE-SCALE ARRAY APPLICATIONS 115

[20] N. Mukherjee, J. Rajski, G. Mrugalski, A. Pogiel, and J. Tyszer, “Ring
generator: An ultimate linear feedback shift register,” IEEE Comput.,
vol. 44, no. 6, pp. 64–71, Jun. 2011.

[21] D. Bronzi, F. Villa, S. Tisa, A. Tosi, and F. Zappa, “SPAD figures
of merit for photon-counting, photon-timing, and imaging applications:
A review,” IEEE Sensors J., vol. 16, no. 1, pp. 3–12, Jan. 2016.

[22] V. Friedman and S. Liu, “Dynamic logic CMOS circuits,” IEEE J. Solid-
State Circuits, vol. JSSC-19, no. 2, pp. 263–266, Apr. 1984.

[23] P. Alfke, “Efficient shift registers, LFSR counters, and long pseudo-
random sequence generators,” Xilinx Inc., San Jose, CA, USA,
Tech. Rep. XAPP 052, Jul. 1996.

[24] R. Cunha, H. Boudinov, and L. Carro, “Quaternary look-up tables using
voltage-mode CMOS logic design,” in Proc. 37th Int. Symp. Multiple-
Valued Logic (ISMVL), 2007, p. 56.

[25] C. Yoo, “A CMOS buffer without short-circuit power consumption,”
IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 47,
no. 9, pp. 935–937, Sep. 2000.

[26] L. Ding and P. Mazumder, “On circuit techniques to improve noise
immunity of CMOS dynamic logic,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 12, no. 9, pp. 910–925, Sep. 2004.

[27] M. Alioto, G. Palumbo, and M. Pennisi, “Understanding the effect of
process variations on the delay of static and domino logic,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 18, no. 5, pp. 697–710,
May 2010.

[28] K. Martin, “Digital integrated system building blocks,” in Digital
Integrated Circuit Design. New York, NY, USA: Oxford Univ. Press,
2000, pp. 407–408.

Daniel Morrison (S’16) received the B.E. degree
(honors) in electrical and computer system engineer-
ing and the B.Sc. degree in physics and applied
mathematics from Monash University, Clayton, VIC,
Australia, in 2015, where he is currently work-
ing toward the Ph.D. degree with the BICS SPAD
Group.

He is currently a Researcher with the BICS SPAD
Group, Monash University. His current research
interests include VLSI digital systems, single-photon
detection, and integrated sensor front ends.

Dennis Delic (M’07) received the B.E. degree
(honors) in electronic engineering and the Ph.D.
degree from the University of South Australia,
Adelaide, SA, Australia, in 1993 and 2002,
respectively.

From 1996 to 2000, he was a Senior Bipolar
Design Engineer with Philips Semiconductors,
where he was responsible for the design of data
interface and power control application-specific inte-
grated circuits. From 2001 to 2006, he was with
Integrated Device Technologies, where he was

designing CMOS advanced programmable switching and timing products.
In 2006, he joined the Defence Science and Technology Group, where he
is involved in the scientific research of advanced technologies and manages a
broad portfolio of technical projects. He currently leads the development of
high-density CMOS single-photon avalanche diode (SPAD) arrays. His current
research interests include SPAD-based flash LADAR for both bathymetric and
3-D imaging applications.

Dr. Delic received the DST Fellowship to research SPAD image sensors
in 2012.

Mehmet Rasit Yuce (S’01–M’05–SM’10) received
the M.S. degree in electrical and computer engineer-
ing from the University of Florida, Gainesville, FL,
USA, in 2001, and the Ph.D. degree in electrical
and computer engineering from North Carolina State
University, Raleigh, NC, USA, in 2004.

He was a Postdoctoral Researcher with the
Electrical Engineering Department, University of
California at Santa Cruz, Santa Cruz, CA, USA,
in 2005. He was an Academic Member with the
School of Electrical Engineering and Computer

Science, University of Newcastle, Callaghan, NSW, Australia, until 2011.
In 2011, he joined Monash University, Clayton, VIC, Australia, where he
is currently an Associate Professor with the Department of Electrical and
Computer Systems Engineering. He has authored the books Wireless Body
Area Networks in 2011 and Ultra-Wideband and 60 GHz Communications
for Biomedical Applications in 2013. His current research interests include
wearable devices, Internet-of-Things for health care, wireless implantable
telemetry, wireless body area network, biosensors, and integrated circuit
technology dealing with digital, analog, and radio-frequency circuit designs
for wireless, biomedical, and RF applications. He has published more than
150 technical articles in these areas.

Dr. Yuce received the NASA Group Achievement Award in 2007 for
developing a silicon-on-insulator transceiver, the Best Journal Paper Award
from the IEEE Microwave Theory and Techniques Society in 2014, and
the Research Excellence Award from the Faculty of Engineering and Built
Environment, University of Newcastle, in 2010. He is a Topical Editor of the
IEEE SENSORS JOURNAL and was a Guest Editor of the IEEE JOURNAL OF
BIOMEDICAL AND HEALTH INFORMATICS in 2015.

Jean-Michel Redouté (M’09–SM’12) received the
M.S. degree in electronics from the University of
Antwerp, Antwerp, Belgium, in 1998, the M.Eng.
degree in electrical engineering from the University
of Brussels, Brussels, Belgium, in 2001, and the
Ph.D. degree from the University of Leuven, Leuven,
Belgium, in 2009. His Ph.D. thesis was on the design
of EMI resisting analog integrated circuits.

In 2001, he was with Alcatel Bell, Antwerp, where
he was involved in the design of analog micro-
electronic circuits for telecommunications systems.

In 2005, he joined the ESAT-MICAS Laboratories, University of Leuven,
as a Ph.D. Research Assistant. In 2009, he was a Post-Doctoral Scholar
with the Berkeley Wireless Research Center, University of California at
Berkeley, Berkeley, CA, USA. In 2010, he joined Monash University, Clayton,
VIC, Australia, as a Senior Lecturer. His current research interests include
mixed-signal integrated circuit (IC) design, electromagnetic compatibility,
biomedical (IC and non-IC) circuit design, and radio-frequency IC design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

